
CSCI 3412 Algorithms
Homework 1
Matt Sullivan

Part 1: Question
For Homework 1, I have selected bubble sort as my naive sort, merge sort as my normal sort, and I am
using a hash table for the O(n) sort.
The sorting problem is defined as:
Input: A sequence of n numbers 〈a1, a2,... , an 〉 .
Output: A permutation (reordering) 〈a '1,a '2,... , a ' n 〉of the input sequence such that
a '1≤a '2≤...≤a 'n .
From this definition, we can derive a sorting algorithm that tests successive permutations of the input
sequence until it finds one that is sorted. Note that as long as the elements in the sequence are
comparable using ≤ then a sorted permutation must exist.
I will give you several input files that will allow you to analyze various aspects of the code. All of the
data are integers between 0 and 99 inclusive. The data sets are:
1. shuffled.txt – the integers 0-99 in random order – i.e., shuffled
2. sorted.txt – the integers 0-99 in sorted order (ascending order)
3. nearly-sorted.txt – the integers 0-99 in nearly sorted order
4. unsorted.txt – the integers 0-99 in unsorted order (descending order)
5. nearly-unsorted.txt – the integers 0-99 in nearly unsorted order
6. duplicate.txt – 100 integers 0, 10, 20, …, 90 – i.e., many duplicates – in random order.
All of the files have the following format with one entry per line:
Description of the data set
<n>
A[1]
A[2]
… A[n]
Note that because of the order of growth of the expected running time for the permutation sort, we will
limit ourselves to using the first ten (10) elements of each data set.

Part 2: Pseudo-Code
I found the Bubblesort pseudo-code from page 40 of our textbook.
BUBBLESORT(A)
1 for I = 1 to A.length - 1
2 for j = 1 to A.length-1
3 if A[j] < A[j+1]
4 exchange A[j] with A[j+1]

Likewise, I found Pseudo-code for merge-sort is from in our lecture notes. I'musing the merge function,
because it's actually the recursively called part of the code
MERGE(A, p, q, r)
1 n1 = q-p+1
2 n2 = r-q
3 let L[1...n1 +1] and R[1...n2+1] be new arrays
4 for I =1 to n1
5 L[i] = A[p+i-1]
6 for j =1 to n2

1

7 R[i] = A[q+j]
8 L[n1+1] =∞
9 R[n2 +1]=∞
10 i =1
11 j=1
12 for k = p to r
13 if L[i] <= R[j]
14 A[k]=L[i]
15 i=i+1
16 else A[k]=R[j]
17 j=j+1

Because the count sort has special circumstances (all members are from 0-99), it is not a common algorithm, so I
wrote my own pseudo-code.
1While i < length of the list
2 Increment the ith index of the array of zeros
3 Increment I
4 Increment computation tracker
5 While k < length of the file list
6 While l< length of the array of zeros
7 Append an instance of k to the sorted list
8 Increment l
9 Increment computation tracker
10 Increment k
11 Reset value l

Part 3: Static Analysis
Bubble-sort:
At the start of each iteration of the for loop, the values of A[length-j...length] are greater than A
[1...length-j] and are sorted.
This is true prior to the first iteration, because there is no value for subarray[length-j... length] is empty, and
hence sorted.
With every iteration, the higher value swaps higher (bubbles) to the way to the right of the array, making it true.
At the end of the loop, the highest value is at the rightmost position, and all of the values in [length-j...length]
will be sorted.
At the start of each iteration of the for loop in lines 12-17, L[i] and R[j] are the lowest values of their lists,
and A is in sorted order.
This is true prior to the first iteration, as L[i] and R[j] are both single element lists, and therefore are the lowest
value, and A is sorted because it is empty.
With every iteration, L[i] and R[j] are the lowest values in their respective lists because they are iterated, and
whichever is smaller is added to the end of list A, making it sorted.
At the end of the loop, L[i] and R[j] will both iterate to the end of their respective lists, and A will be completely
sorted.
At the start of each iteration of the while loop in lines 5-11, the values of list[1...k] is in sorted order.
This is true prior to the first iteration, because list[1...0] is an empty list, which is sorted.
With every iteration, we step through the hash table and add the value to the list. Since the values are in sorted
order, The list will be in sorted order.
At the end of the loop, the list[1..k] traverses the entire hash table, and the list is now in sorted order.

2

Part 4: Code
I initially wrote all 3 algorithms in Python. But I couldn't find a way to optimize the compiler fast
enough for the one million randoms file size (rough estimates put runtime at about 10 days), so I re-
wrote bubble-sort using C++.

Bubble-sort:
My bubble-sort is written by stepping through the array and comparing i and i+1, and swapping the
value if i <i+1.

// This program uses a bubble sort to arrange an array of integers in
// ascending order

#include<iostream>
#include<fstream>
#include<vector>
#include<cstdint>
using namespace std;

// Matthew Sullivan

void bubbleSortArray(vector<int>&);
void displayArray(vector<int>);

int main()
{

fstream readFile;
readFile.open("unsorted.txt");
readFile.ignore(256, '\n');
readFile.ignore(256, '\n');
vector<int> values;
int value = 0;
while (readFile.peek() != EOF)
{

readFile >> value;
values.push_back(value);

}
values.pop_back();

bubbleSortArray(values);

return 0;
}

void displayArray(vector<int> array) // function heading
{ // displays the array
for (int i = 0; i < array.size(); i++)
{

cout << array[i] << " ";
}
cout << endl;
}

void bubbleSortArray(vector<int> &array)
{

uint64_t compareNum = 0;

3

uint64_t swapNum = 0;
int temp;
for (int i = 0; i <= array.size()-1; i++) {

for (int j = 0; j <= array.size()-1; j++) {
if (j == array.size() - 1)
{

break;
}
else if (array[j] > array[j + 1]) {

// Consider std::swap here.
temp = array[j + 1];
array[j + 1] = array[j];
array[j] = temp;
swapNum++;

}
compareNum++;

}
}
cout << "Comparisons: " << compareNum << endl;
cout << "Swaps: " << swapNum <<endl;

}

Merge-sort:
Merge-sort is written in python. It calls itself recursively to split left and right halves of the array. The
arrays are then merged together in sorted order.

"""
Created on Sat Feb 3 23:11:57 2018

@author: oneey_000
"""
a=[]
b = open("one-million-randoms.txt", "r")
b.readline()
b.readline()
size =0
for line in b:
 a.append(int (line))
 size+=1
if (size == 100000): used to modify size for length comparison
break
def mergeSort(thisList):
 numberComp = 0
 if len(thisList) >1:
 middle = int(len(thisList)/2)
 left=thisList[:middle]
 right=thisList[middle:]
 leftResult =mergeSort (left)
 rightResult =mergeSort (right)
 numberComp +=1
 numberComp += leftResult[1]+rightResult[1]
 i=0
 j=0
 k=0
 while i < len(left) and j < len(right):
 if left[i] < right[j]:
 thisList[k] = left[i]

4

 i+=1
 numberComp +=1
 else:
 thisList[k] = right[j]
 j+=1
 numberComp +=1
 k+=1
 while i < len(left):
 thisList[k] = left[i]
 k+=1
 i+=1
 numberComp += 1
 while j < len(right):
 thisList[k] = right[j]
 k+=1
 j+=1
 numberComp += 1
 return thisList, numberComp
totalComp =mergeSort(a)[1]
print ("Total operations: " + str(totalComp))

Hash Table:
My hash table sort is also written in python. It takes advantage of the fact that we know that all of the
numbers are between 0-99 to create a lists of zeros (representing integers 0-99) that are incremented as
we step through the array.

"""
Created on Wed Feb 7 21:52:07 2018

@author: oneey_000
"""

index=[0]*100
#while i <=100:
index[i]=0
i=i+1
a=[]
b = open("shuffled.txt", "r")
b.readline()
b.readline()
for line in b:
 a.append(int (line))
i=0
j=0
k=0
l=0
sortedList=[]
numOps=0
while i < len(a):
 index[a[i]]=index[a[i]]+1
 i=i+1
 numOps=numOps+1
while j < len(index):
 print("Index: " +str(j) + " Count: " + str(index[j]))
 j=j+1
while k<len(index):
 while l< index[k]:

5

 sortedList.append(k)
 l=l+1
 numOps+=1
 k=k+1
 l=0
#print (sortedList)
print ("Operations: " +str(numOps))

Part 5: Analysis
Analysis of Growth:
As you can see from the data, the bubble-sort grows as expected at a rate of n^2. The comparisons are
not full n^2, because the last index breaks the loop instead of making a comparison.

Merge-sort: As you can see, the merge-sort grows at roughly 4n(log(n)), which simplifies to n(log(n)).

Hash/Count Sort: As you can see, the Hash/Count sort grows at a rate of 2n. This is what we expected.

Comparison Across Data Sets:
Bubble-sort: As we can see, Bubble-sort is much more efficient in terms of swaps when the data is more sorted.
The fewest number of swaps is a completely sorted array, followed by nearly sorted, duplicates, shuffled, nearly
unsorted, then unsorted. Of course, the number of swaps is already dwarfed by the number of comparisons.

Merge-sort: As we can see, all of the different data sets have the same number of operations, which is what we
expected for merge-sort, which is bound by Θ n(log(n)).

Hash/Count Sort: All of the data sets grow at a flat rate of 2n.
BubbleSort Comparisons Swaps Total

1 0 0 0
10 90 17 107

100 9900 2319 12219

1000 999000 245606 1244606

10000 99990000 24694055 124684055

100000 9999900000 2485926493 12485826493

1000000 999999000000 247470673111 1247469673111

BubbleSort Comparisons Swaps Total
duplicates.txt 9900 2237 12137
nearly-sorted.txt 9900 15 9915
nearly-unsorted.txt 9900 4941 14841
shuffled.txt 9900 2524 12424
sorted.txt 9900 0 9900
unsorted.txt 9900 4950 14850

one-million-randoms.txt 999999000000 247470673111 1247469673111

6

MergeSort Operations
1 0

10 43
100 771

1000 10975
10000 143615

100000 1768927
1000000 20951423

MergeSort Operations
duplicates.txt 771
nearly-sorted.txt 771
nearly-unsorted.txt 771
shuffled.txt 771
sorted.txt 771
unsorted.txt 771
one-million-randoms.txt 20951423

HashTable Operations
1 0

10 20
100 200

1000 2000
10000 20000

100000 200000
1000000 2000000

HashTable Operations
duplicates.txt 200
nearly-sorted.txt 200
nearly-unsorted.txt 200
shuffled.txt 200
sorted.txt 200
unsorted.txt 200
one-million-randoms.txt 2000000

Graphs are on the following pages.

7

8

9

10

